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Acetal formation and hydrolysis
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Acetals and hemiacetals are in the
same oxidation state as carbonyls
and it is therefore not surprising
that they are readily inter-
converted and you should think of
the process of aldehyde-to-
hemiacetal-to-acetal as one
reversible rxn.




Fischer glycosylation
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Presence of an oxygen substituent o to the
anomeric carbon, makes any carbocation formed
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Disaccharides Composed of Glucose
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Maltose, Malt sugar
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Lactose
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thin-layer chromatography "N" for normal soybean
(TLC) "S" for sugar standards

5 cm x 10 cm plate "H" for high sucrose soybean

1.5¢cm
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1cm: - '1cm
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Sucrose
Raffinose
Stachyose

o
70% 1sopropyl alcohol 91% 1sopropyl alcohol

http://www.biotech.iastate.edu/lab_protocols/HSSB-TLC_Student.html
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Fischer glycosidation/glycosylation

Equilibrium reaction

Treated with agueous acid can reverse the reaction

Source of anhydrous acid: Bronsted acid/Lewis acid

Under thermodynamic control

Stable under almost all other conditions except aqgueous acid

PROTECTION OF ANOMERIC CENTER
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C I
extremely crowded

Xll

equatoria
L,

H 1
CH
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strongly preferred conformation

Steric effect

a-glucopyranose
38%

OH
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B-glucopyranose
62%

Thermodynamic
stable pdt
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Anomeric effect
Electronegative substituents on a pyranose

ring prefer to occupy an axial rather than an
equatorial orientation

(A) OH OH

(8) g
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Effective only:

X = electronegative atom, O, F, Cl, Br......

No stabilising electronic interaction
at equatorial position

Several consequences:

Shortening of O-C ring bond length
Lengthening of C-X bond
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Position of the equilibrium

Glucose: thermodynamic stability of
pyranose ring

In this case, all substituents can adopt
equatorial positions

Other sugars may have larger amounts
of the furanose form at equilibrium



Relative amounts of o and p pyranose pdt

Anomeric effect of o form
oteric effects favor equatorial substituents

Steric effect may, at least in part,
counteract the anomeric effect

Competition between electronic effects
(favor o anomer) and steric effects (favor
0. aNOMmer)
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My experience
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summary

To understand the underlying reasons for
the anomeric effect and to be aware of
some of the other consequences

To understand and describe the process
of mutarotation

To be able to ratinalise the relative
proportions of a/f and furanose/pyranose
forms present at equilibrium for glucose



SN1

Step 1: Formation of carbocation (rate limiting)

(CH3)3CCB:1-= < (CH),C* + :Br:i  (slow)

Step 2: Nucleophilic attack on the carbocation
-~ e N
(CH;),C~ : (|)— CH, i (CH;),C— (l) —i (fast)
H H

Final Step: Loss of proton to solvent

<CH3>3C—6)'—CH3 + CH,—OH = (CH),C—O0—CH, + CH,—O—H (fast)

e i
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Inversion of configuration in the S,2 reaction
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solvent partially stripped
off in the transition state
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R—X:

@

ionization

R+

:X:

solvated ions

\ |
R O0—RR

29



X is taking on a partial negative charge

Bk

partial bonding in the transition state
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SWEETING AGENTS



one of five types of taste sensed by humans.

Sweetness, saltiness, sourness, bitterness and
savouriness.

Sucrose is the standard sweetener used in cuisine.

A less expensive alternative known as high
fructose corn syrup (HFCS)

developed in the late 1950's

widely used in baked goods and beverages



HFCS is made from corn syrup by enzymatic conversion
of glucose to fructose.

Fructose is 2.3 times as sweet as glucose and 75%
sweeter than sucrose, then HFCS provides a practical
substitute for sucrose in a variety of applications, and is
available in compositions ranging from 45 to 90%
fructose.

Since the specific rotation of these sugar solutions
changes from +66.52 for pure sucrose to -22.02 for the
hydrolysis mixture (fructose is strongly levorotatory), the
resulting glucose fructose mixture is called invert sugar.

invertase 33
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FDA approval in 1999.
sucralose

Splenda ®

Sweet'n Low ®

in 1879
at Johns Hopkins University

Compound |sucralose [saccharin |acesulfame-K |aspartame |cyclamate |fructose |sucrose |glucose |maltose |lactose

Sweetness 600 300 200 180 30 1.7 1.0 0.7 0.3 0.15
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Intramolecular Amination
O

0 Hozc/\#J\N-H
= /NW/M\ —— /NH2
02C N” “CO2CH: = |\
: : T ‘s CO2CH3

NHz H
& aspartame l
0
Aspertame use is limited by /\HL B
short shelf life in solution, & HO2L h-H
instability at high temperature H-=N
Q +CH20H
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Sweet triangle

For sweetness to be perceived, molecules of a
substance must activate receptor sites in taste bud
proteins on the tongue.

The A(H) and B regions encompass functions of higher
electronegativity,

the distance between Aand B (2.4 A-4.0 A)

O-H or N-H
_ H-bond donor

C, represents a hydrophobic :
and lipophilic region of the ~z0&

molecule

O or N

H-bond acceptor 55 A hydrophohbic
region




aH % B2

HO O
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Steviol

Stevia rebaudiana Bertoni
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anomeric stabilization type 1

CHz CHa
H H i CHs
o
e
H H H H
CH= H
anti gauche
Butane

Rf&r" - C/:
lC)CH3

anomeric stabilization type 2

Dimethoxymethane
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