LECTURE 5 REACTIONS HYDROXYL GROUPS PART I

NOTHING NEW OR MYSTERIOUS

The complications arise only because of there are so many of them!!

As nucleophiles, analog to non-sugar alcohols

The majority of the chemistry is related to the formation of esters and ethers.

Carboxylate esters Acetates –O(CO)CH₃ or –OAc Benzoates –O(CO)C₆H₅ or –OBz

or –OSiPh₂Bu^t or -OTBDPS

Sulfonate esters

Tosylate $-O(SO_2)$ $C_6H_4CH_3$ or -OTsMesylate $-O(SO_2)$ CH_3 or -OMsTriflate $-O(SO_2)$ CF_3 or -OTf

Ethers

Benzyl $-OCH_2C_6H_5$ or -OBn **Trityl** $-OC(C_6H_5)_3$ or -OTr **Trimethylsilyl** $-OSi(CH_3)_3$ or -OTMS **Tert-butyldimethylsilyl** $-OSi(CH_3)_2(C(CH_3)_3)$ or -OTBS or $-OSiMe_2Bu^t$ or -OTBDMS**Tert-butyldiphenylsilyl** $-OSi(C_6H_5)_2(C(CH_3)_3)$ or -OTBS

primary OH-6 secondary OH-2,3,4 anomeric OH-1

The functionality at the anomeric center can react in two ways

as an alcohol or as an aldehyde

act as aldehyde to form acetal Effectively protect the anomeric center and prevents further reactivity

Equilibrium of α - and β -hydroxyls at the anomeric position

Potential competing inter-conversion between α and β forms

inter-conversion between pyranose and furanose forms

Solubility: very polar in nature very soluble in polar solvents, especially with possible H-bonding

Insoluble in non-polar solvents for organic reactions, pdt purification and manipulation

Selective protection of particular hydroxyl groups allows the regioselctive rxn of those unprotected

Common starting point: protect the majority or even all of the free -OH

Reduction

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Esters: non-nucleophilic and stable to a wide range of Conditions

Frequently used protect groups
Less polar than the corresponding alcohols

Acetylation

Most commonly used esters

Stirring the alcohol with acetic anhydride and a base

Base mop up the acetic acid generated, and catalyses the rxn itself

Nucleophilic catalysis and base

Uncatalysed rxn is very slow at rt

Lewis acid catalysis

But with possible competing process of mutarotation

1. Acetylation with acetic anhydride/pyridine

Equal proportions as solvents

Ratio depends on particular sugars

2. Acetylation with acetic anhydride/ sodium acetate

Relatively weak base, sluggish rxn at rt

Carry out at 100°C, usually generate β -acetates Mutarotation is much faster than the acetylation

 β Hydroxyl is more nucleophilic than the axial α one

β - occupies a less hindered equatorial than the axial of α -

repulsive effect between the ring oxygen lone pair orbitals and the lone pair orbitals on the β -anomeric oxygen atom

Kinetic anomeric effect

HO OH OH

MINEUC ANOMERIC ENECT

3. Acetylation with acetic anhydride/ Lewis acid catalysis

Strong Lewis acid catalyses the equilibrium of α - and β -, after catalyses the rxn

Thus equilibrium of $\alpha\text{-}$ and $\beta\text{-}acetates$ will occur after the rxn

Anomeric effect leads us α -acetates

Protecting groups

Satisfy several important criteria

- 1) They should be formed in good yield,
- 2) they should be stable to subsequent rxn conditions,

3) They should be readily removed under appropriate conditions

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Benzyl ethers (ROBn)

Cleavage

H₂

Catalytic hydrogenation

Heterogeneous catalyst

Palladium on carbon (Pd/C)

When the metal is distributed over finely-divided carbon, the surface area is larger and the catalyst is more reactive.

Palladium hydroxide (Pearlman's catalyst)

For the removal of sterically inaccessible/multiple benzyl groups

Single electron oxidising reagent

(NH₄)₂Ce(NO₃)₆

Ceric ammonium nitrate (CAN)

2,3-Dichloro-5,6-Dicyanobenzoquinone

Trityl ethers

Triphenylmethyl ether

Very selective for the primary hydroxyl group

Formation via an SN1 type process

By treatment of unprotected sugar

Resonance stabilisation of the trityl cation

Silyl ethers

Imidazole acts as a nucleophilic catalyst and forms intermediates, e.g.

.OSiMe₃ **Trimethylsilyl (TMS)** OH -|0 OSiMe₃ Me₃SiCl Me₃SiO Me₃SiO Pyridine ОМе OMe **Tert-Butyldimethylsilyl** .OH (TBDMS or TBS) OH -IO Bu^tPh₂SiCl imidazole ОMе

ОМе

cleavage

acid, may also cause removal of othe racid labile protecting groups

Tetrabutylammonium fluoride (TBAF)

Relative rate of acid hydrolysis (stability increase in order)

R-OSiMe₃ 1

R-OSiMe₂Bu^t 1E-3

R-OSiPh₂Bu^t 1E-5

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Acetate, and

Removed by nucleophile

Most commonly methoxide in trans-esterification rxn

Potassium carbonate in methanol

benzoyl ester

Sodium methoxide in methanol (zémplen deacetylation)

In both cases, methoxide in catalytic

Milder conditions, such as treatment with primary amines, are also effective for the removal of certain esters, and can do selective deprotection rxn

Sulfonate esters

methanesulfonate

triflate trifluoromethanesuflonate

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Nucleophilic substitution RXN

Retarded by the presence of electron withdrawing oxygen which are β to the carbon atom at which the displacement is taking place

$S_N 2 \text{ not } S_N 1$

Electron
withdrawing
effect greatly
destabilises any
carbonium in in
S_N1

S_N2 trans trans

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Oxidation

PCC Oxidation

Elias James Corey

Born: 12 July 1928

Affiliation at the time of the award: Harvard University, Cambridge, MA, USA

Prize motivation: "for his development of the theory and methodology of organic synthesis"

Field: Organic chemistry

Pfitzner-Moffatt oxidation

Swern oxidation

OH OMSO
$$R_1$$
 R_2 R_2 R_3 R_2 R_3 R_4 R_2 R_3 R_4 R_2

uronic acid

Selective oxidation to primary hydroxyl group

aldaric acid

Particularly useful for cleavage of the carbohydrate backbone at a specific point

Since the reagent will only cleave between two **cis** alcohol groups

Also useful for shortening of the carbohydrate chain

Acetylation

Acetals

Ether

Ester

Nucleophilic Substitution

oxidation

Reduction

Reduction to prepare deoxy sugars

Xanthate ester

Barton-McCombie deoxygenation

Other possible ways

Nucleophilic displacement of leaving groups, e.g. OMs or OTs, with hydride from reducing agents such as LiAlH₄ is not generally a good route

Nucleophilic substitution is much slower in carbohydrates due to the β -oxygen effect

Under basic conditions, side reactions such as elimination rxns occur preferentially with reducing agents

Hydrogenolysis of halides in the presence of mild base is prefered.

summary

Describe the three types of hydroxyl groups found in sugars

Remember anomeric center acts as an alcohol or aldehyde Describe the three types of hydroxyl groups found in sugars

Realize the importance of protection to allow regioselective rxns of those unprotected

Explain the pdts of acetylations under different conditions

Know how to selectively protect the primary hydroxyl group

Recall the method in forming and cleaving ethers and esters